Archive

"Simultaneous Encouraging Effects of New Technologies for Socioeconomic and Environmental Sustainability"

Uçkaç, Bekir Cihan, Coccia, Mario, Kargı, Bilal

Abstract

This research delves into the progression of technologies designed to facilitate the shift toward sustainable energy and eco-friendliness, assessing their potential influence on both ecological and economic systems. By examining data from sources like Scopus and patent records, it pinpoints promising technologies, such as offshore wind turbines, carbon capture storage, electrochemical CO2 conversion, bioconversion of CO2, sustainable ammonia production, and cellular agriculture. While certain of these technologies are already making significant progress in the market, others are still undergoing research and development. The study underscores the significance of these technologies in curbing CO2 emissions and environmental harm, providing valuable insights for policymakers and investors. It stresses the necessity for nations to transition from fossil fuel-dependent economies and instead adopt principles of a circular economy, renewable energy sources, and environmentally friendly production practices. Despite its limitations, this research illuminates essential technological avenues for sustainable development and ecological transformation.

Keywords: fossil-based energy; Environmental pollution; Environmental degradation; Sustainability science; Sustainable technologies; Environmental technologies; Green technology; Sustainable development.

Full text PDF

  1. Adam, D. (2021). How far will global population rise? Researchers cant agree. Nature, 597(7877), 462-465. doi. https://doi.org/10.1038/d41586-021-02522-6
  2. Adaman, F., Pat, D. (2022). Revisiting the calculation debate: A call for a multiscale approach, Rethinking Marxism, 34(2), 162-192. doi. https://doi.org/10.1080/08935696.2022.2051374
  3. Aidnik, M. (2022). Envisioning a utopian ecosocialism in the darkness of the Covid-19 pandemic, Capitalism Nature Socialism. 33(2), 44-59. doi. https://doi.org/10.1080/10455752.2021.2016878
  4. Ali A., Audi, M., Roussel, Y. (2021). Natural resources depletion, renewable energy consumption and environmental degradation: A comparative analysis of developed and developing world. International Journal of Energy Economics and Policy, 11(3), 251-260. doi. https://doi.org/10.32479/ijeep.11008
  5. Ampelli, C. (2020). Electrode design for ammonia synthesis. Nature Catalysis, 3, 420-421. doi. https://doi.org/10.1038/s41929-020-0461-x
  6. Arcelor, M. (2022). Clean power steelmaking. Retrieved from.
  7. Aresta, M., Dibenedetto, A. (2020). Carbon recycling through CO2-conversion for stepping toward a cyclic-c economy. A perspective front. Energy Research. 8, 159. doi. https://doi.org/10.3389/fenrg.2020.00159
  8. Ayres, R.U. (1990). Technological transformations and long waves. Part II. Technologica Forecasting and Social Change. 37(2), 111-137. doi. https://doi.org/10.1016/0040-1625(90)90065-4
  9. Ayres, R.U. (1990a). Technological transformations and long waves. Part I. Technol. Forecast. Soc. Chang. 37 (1), 1-37.
  10. Ayres R.U. (1998). Towards a disequilibrium theory of endogenous economic growth. Environmental and Resource Economics, 11(3-4), 289-300. doi. https://doi.org/10.1023/A:1008239127479
  11. Bapat, S., Koranne, V., Shakelly, N., (...), Rajurkar, K.P., Malshe, A.P. (2022). Cellular agriculture: An outlook on smart and resilient food agriculture manufacturing. Smart and Sustainable Manufacturing Systems, 6(1), 1-11. doi. https://doi.org/10.1520/SSMS20210020
  12. Belpomme, D., Irigaray, P., Hardell, L., Clapp, R., Montagnier, L., Epstein, S., Sasco, A.J. (2007). The multitude and diversity of environmental carcinogens, Environmental Research, 105(3), 414-429. doi. https://doi.org/10.1016/j.envres.2007.07.002
  13. Bowman, D.M. et al. (2011). The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), 2223-2236. doi. https://doi.org/10.1111/j.1365-2699.2011.02595.x
  14. Calza, F., Parmentola, A., Tutore, I. (2020). Big data and natural environment. How does different data support different green strategies? Sustainable Futures, 2, 100029. doi. https://doi.org/10.1016/j.sftr.2020.100029
  15. Campbell, C.J. (2002). Petroleum and people. Population and Environment, 24(2), 193-207. doi. https://doi.org/10.1023/A:1020752205672
  16. Centobelli, P., Cerchione, R., Del Vecchio, P., Oropallo, E., Secundo, G. (2021). Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Information management, 59(7), 103508. doi. https://doi.org/10.1016/j.im.2021.103508
  17. Chapman, A., Ertekin, E., Kubota, M., (...), Kirchheim, R., Sofronis, P. (2022). Achieving a carbon neutral future through advanced functional materials and technologies, Bulletin of the Chemical Society of Japan, 95(1), 73-103. doi. https://doi.org/10.1246/bcsj.20210323
  18. Chen, J., Mao, B., Wu, Y., (...), Yu, A., Peng, L. (2023). Green development strategy of offshore wind farm in China guided by life cycle assessment. Resources, Conservation and Recycling, 188, 106652. doi. https://doi.org/10.1016/j.resconrec.2022.106652
  19. Chin, A., Fu, R., Harbor, J., Taylor, M.P., Vanacker, V. (2013). Anthropocene: Human interactions with earth systems, Anthropocene, 1, 1-2. doi. https://doi.org/10.1016/j.ancene.2013.10.001
  20. Cho, R. (2022). What is decarbonization, and how do we make it happen? Columbia Climate School, https://news.climate.columbia.edu/2022/04/22/what-is-decarbonization-and-how-do-we-make-it-happen/
  21. Coccia, M. (2010). Public and private RD investments as complementary inputs for productivity growth. International Journal of Technology, Policy and Management, 10(1/2), 73-91. doi. https://doi.org/10.1504/IJTPM.2010.032855
  22. Coccia, M. (2017). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis Strategic Management, 29(9), 1048-1061. doi. https://doi.org/10.1080/09537325.2016.1268682
  23. Coccia, M. (2018). A theory of the general causes of long waves: War, general purpose technologies, and economic change. Technological Forecasting Social Change, 128, 287-295. doi. https://doi.org/10.1016/j.techfore.2017.11.013
  24. Coccia, M. (2019). A Theory of classification and evolution of technologies within a generalized Darwinism, Technology Analysis Strategic Management, 31(5), 517-531. doi. http://dx.doi.org/10.1080/09537325.2018.1523385
  25. Coccia, M. (2020). Destructive technologies for industrial and corporate change. A. Farazmand A., Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham, https://doi.org/10.1007/978-3-319-31816-5_3972-1
  26. Coccia, M. (2021). Technological innovation. The Blackwell Encyclopedia of Sociology. Edited by George Ritzer and Chris Rojek. John Wiley Sons, Ltd. https://doi.org/10.1002/9781405165518.wbeost011.pub2
  27. Coccia, M. (2022). Probability of discoveries between research fields to explain scientific and technological change. Technology in Society, 68, 101874. doi. https://doi.org/10.1016/j.techsoc.2022.101874
  28. Constant, K., Nourry, C., Seegmuller, T. (2014). Population growth in polluting industrialization, Resource and Energy Economics, 36(1), 229-247. doi. https://doi.org/10.1016/j.reseneeco.2013.05.004
  29. Crutzen, P.J., Stoermer, E.F. (2000). The anthropocene, global IGBP, Change Newsletter, 41, 17-18.
  30. CTCN, (2022). CO2 storage technologies. Retrieved from.
  31. Cui, X., Tang, C., Zhang, Q. (2018). A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions, Advanced Energy Materials. 8(22), 1800369. doi. https://doi.org/10.1002/aenm.201800369
  32. Edeme, R.K., Nelson, C., Nkalu, J., Idenyi, C., Winnie, O.A. (2020). Infrastructural development, sustainable agricultural output and employment in ECOWAS countries, Sustainable Futures, 2, 100010. doi. https://doi.org/10.1016/j.sftr.2020.100010
  33. Elavarasan, R.M., Pugazhendhi, R., Irfan, M., Mihet-Popa, L., Khan, I.A., Campana, P.E. (2022). State-of-the-art sustainable approaches for deeper decarbonization in Europe An endowment to climate neutral vision. Renewable and Sustainable Energy Reviews, 159, 112204. doi. https://doi.org/10.1016/j.rser.2022.112204
  34. Elia, A., Taylor, M., Gallachir, B., Rogan, F. (2020). Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers, Energy Policy, 147, 111912. doi. https://doi.org/10.1016/j.enpol.2020.111912
  35. Equinor, (2022). Carbon capture, utilisation and storage (CCS). Retrieved from.
  36. Esmaeilzadeh, P. (2022). Benefits and concerns associated with blockchain-based health information exchange (HIE): a qualitative study from physicians perspectives. BMC Medical Informatics and Decision Making, 22(1), 80. doi. https://doi.org/10.1186/s12911-022-01815-8
  37. Foley, S.F., Gronenborn, D., Andreae, M.O., Kadereit, J.W., () Sirocko, F., Crutzen, P.J. (2013). The palaeoanthropocene The beginnings of anthropogenic environmental change, Anthropocene, 3, 83-88. doi. https://doi.org/10.1016/j.ancene.2013.11.002
  38. Fowler, D., Brimblecombe, P., Burrows, () Unsworth, M.H., Vieno M. (2020). A chronology of global air quality. Philosophical Trabsactions of the Royal Society A, 378, 20190314. doi. https://doi.org/10.1098/rsta.2019.0314
  39. Gadikota, G. (2021). Carbon mineralization pathways for carbon capture, storage and utilization. Communications Chemistry, 4(1), 23-35.
  40. Ghiat I., Al-Ansari T. (2021). A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. Journal of CO2 Utilization, 45, 101432. doi. https://doi.org/10.1016/j.jcou.2020.101432
  41. Glikson, A. (2013). Fire and human evolution: The deep-time blueprints of the Anthropocene. Anthropocene, 3, 89-92. doi. https://doi.org/10.1016/j.ancene.2014.02.002
  42. Global Change, (2022). Population growth. A project of the University of California Museum of Paleontology. Retrieved from.
  43. Gonzalo, P.A., Benmessaoud, T., Entezami, M., Garca-Mrquez, F.P. (2022). Optimal maintenance management of offshore wind turbines by minimizing the costs, Sustainable Energy Technologies and Assessments, 52, 102230. doi. https://doi.org/10.1016/j.seta.2022.102230
  44. Hausfather, Z., Peters, G.P. (2020). Emissions - the business as usual story is misleading. Nature, 577(7792), 618620. doi. https://doi.org/10.1038/d41586-020-00177-3
  45. Howson, P. (2019). Tackling climate change with blockchain. Nature Climate Change, 9, 644645. doi. https://doi.org/10.1038/s41558-019-0567-9
  46. Hughes, A., Park, A., Kietzmann, J., Archer-Brown, C. (2019). Beyond Bitcoin: what blockchain and distributed ledger technologies mean for firms. Business Horizpns, 62(3), 273281. doi. https://doi.org/10.1016/j.bushor.2019.01.002
  47. Iberdrola, (2022). Puertollano Green Hydrogen Plant. Retrieved from.
  48. IEA, (2022). Carbon capture, utilisation and storage. Retrieved from.
  49. IPCC, (2007), Summary for Policymakers, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, p.17.
  50. IPCC, (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  51. Javid, I., Chauhan, A., Thappa, S., Verma, S.K., Anand, Y., Sawhney, A., Tyagi, V.V., Anand, S., (2021). Futuristic decentralised clean energy networks in view of inclusive-economic growth and sustainable society. Journal of Cleaner Production, 309, 127304. doi. https://doi.org/10.1016/j.jclepro.2021.127304
  52. Kaldellis, J.K., Chrysikos, T. (2019). Wave energy exploitation in the Ionian Sea Hellenic coasts: spatial planning of potential wave power stations. International Journal of Sustainable Energy, 38(4), 312-332. doi. https://doi.org/10.1080/14786451.2018.1539395
  53. Kaza, S., Yao, L.C., Bhada-Tata, P., Van Woerden, F. (2018). What a Waste 2.0 : A Global Snapshot of Solid Waste Management to 2050. Urban Development;. Washington, DC: World Bank. Retrieved from.
  54. Khan, M.N., Huang, J., Shah, A., (...), Zhang, H., Nez-Delgado, A. (2022). Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar. Environmental Research, 203,111879. doi. https://doi.org/10.1016/j.envres.2021.111879
  55. La Scalia, G., La Fata, C.M., Certa, A., Micale, R. (2022). A multifunctional plant for a sustainable reuse of marble waste toward circular economy. Waste Management Research. 40(6), 806-813. doi. https://doi.org/10.1177/0734242X211029161
  56. Li, M., Cao, S., Zhu, X., Xu, Y. (2022). Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities. Applied Energy, 316, 119118. doi. https://doi.org/10.1016/j.apenergy.2022.119118
  57. Linstone, H.A. (2010). Historians and complexity: trends vs. collapses? Technological Forecasting and Social Change, 77(8), 1415-1428.
  58. Lv, X.-W., Weng, C.-C., Yuan, Z.-Y. (2020). Ambient ammonia electrosynthesis: Current status, challenges, and perspectives. Chem. Sus. Chem, 13(12), 3061-3078. https://doi.org/10.1002/cssc.202000670
  59. Magdoff, F. (2013). Global resource depletion: Is population the problem? Monthly Review, 64(8), 35-50. doi. https://doi.org/10.14452/MR-064-08-2013-01_2
  60. Magdoff, F., Foster, B.J. (2011). What Every Environmentalist Needs to Know About Capitalism. Monthly Review Press: New York.
  61. Marsh, G.P. (1864). Man and Nature. Reprinted in 1965. Harvard University Press, Cambridge.
  62. Meadows, D., Meadows, D., Randers, J., Behrens III, W.W. (1972). The Limits to Growth; A Report for the Club of Romes Project on the Predicament of Mankind. New York: Universe Books.
  63. Moritz, J., Tuomisto, H.L., Ryynnen, T. (2022). The transformative innovation potential of cellular agriculture: Political and policy stakeholders perceptions of cultured meat in Germany, Journal of Rural Studies, 89, 54-65. doi. https://doi.org/10.1016/j.jrurstud.2021.11.018
  64. Mosleh, M., Roshani, S., Coccia, M. (2022). Scientific laws of research funding to support citations and diffusion of knowledge in life science. Scientometrics 127, 1931-1951. doi. https://doi.org/10.1007/s11192-022-04300-1
  65. Moss, R., Edmonds, J., Hibbard, K. et al., (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747756. doi. https://doi.org/10.1038/nature08823
  66. NASA Global Climate Change, (2022). The Effects of Climate Change. Retrieved from.
  67. National Academies of Sciences, Engineering, and Medicine, (2022). Carbon Dioxide Utilization Markets and Infrastructure: Status and Opportunities: A First Report. Washington, DC: The National Academies Press. doi. https://doi.org/10.17226/26703
  68. Nemet, G.F. (2006). How well does learning-by-doing explain cost reductions in a carbon-free energy technology? FEEM Working Paper, No.143.06. doi. https://doi.org/10.2139/ssrn.946173
  69. NIST, (2022). NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10 Retrieved from.
  70. Nti, K.E., Cobbina, S.J., Attafuah, E.E., Opoku, E., Gyan, M.A. (2022). Environmental sustainability technologies in biodiversity, energy, transportation and water management using artificial intelligence: A systematic review. Sustainable Futures, 4, 100068. doi. https://doi.org/10.1016/j.sftr.2022.100068
  71. Oh, H.S. (2020). Unit commitment considering the impact of deep cycling, Sustainable Futures, 2, 100031. doi. https://doi.org/10.1016/j.sftr.2020.100031
  72. Peplow, M. (2022). The race to upcycle CO2 into fuels, concrete and more. Nature, 603, 780-783. doi. https://doi.org/10.1038/d41586-022-00807-y
  73. Prez, C.J., Ponce, C.J. (2015). Disruption costs, learning by doing, and technology adoption, International Journal of Industrial Organization, 41, 64-75. doi. https://doi.org/10.1016/j.ijindorg.2015.03.010
  74. Pronti, A., Coccia, M. (2020). Multicriteria analysis of the sustainability performance between agroecological and conventional coffee farms in the East Region of Minas Gerais (Brazil). Renewable Agriculture and Food Systems, 36(3), 299-306. doi. https://doi.org/10.1017/S1742170520000332
  75. Pronti, A., Coccia, M. (2021). Agroecological and conventional agricultural systems: comparative analysis of coffee farms in Brazil for sustainable development, International Journal Sustainable Development, 23(3/4), 223-248. doi. https://doi.org/10.1504/IJSD.2020.115223
  76. Resources Magazine, (2022). Carbon Capture and Storage, 101. Retrieved from.
  77. Roger, M., Brown, F., Gabrielli, W., et al. (2018). Efficient hydrogendependent carbon dioxide reduction by Escherichia coli. Current Biology, 28(1), 140-145. doi. https://doi.org/10.1016/j.cub.2017.11.050
  78. Roshani, S., Bagheri, R., Mosleh, M., Coccia, M. (2021). What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines. Scientometrics, 126, 7859-7874. doi. https://doi.org/10.1007/s11192-021-04077-9
  79. Ruddiman, W.F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climate Change, 61, 261-293. doi. https://doi.org/10.1023/B:CLIM.0000004577.17928.fa
  80. Saeli, M.I.N., Capela, M., Campisi, T., Seabra, M.P., Tobaldi, D.M., La Fata, C.M. (2022). Architectural technologies for life environment: Spent coffee ground reuse in lime-based mortars. A preliminary assessment for innovative green thermo-plasters, Construction and Building Materials, 319, 126079. doi. https://doi.org/10.1016/j.conbuildmat.2021.126079
  81. Sahal, D. (1981). Patterns of Technological Innovation, Addison-Wesley Publishing Company, Inc.: Reading, MA, USA.
  82. Sanni, M., Verdolini, E. (2022). Eco-innovation and openness: Mapping the growth trajectories and the knowledge structure of open eco-innovation. Sustainable Futures, 4, 100067. doi. https://doi.org/10.1016/j.sftr.2022.100067
  83. Scopus, (2022). Start exploring, search documents. Retrieved from.
  84. Soloveichik, G. (2019). Electrochemical synthesis of ammonia as a potential alternative to the HaberBosch process. Nature Catalysis, 2, 377-380. doi. https://doi.org/10.1038/s41929-019-0280-0
  85. Steffen, W., Crutzen, P.J., McNeill J.R. (2007). The Anthropocene: are humans now overwhelming the great forces of nature? AMBIO, 36, 614-621. doi. https://doi.org/10.1579/0044-7447(2007)36614:TAAHNO2.0.CO;2
  86. Steingraber, S. (1997). Industrial pollution, pesticides, and cancer. Living Downstream. An Ecologist Looks at Cancer and the Environment. Reading, Addison-Wesley, Massachusetts,
  87. Sterner, T., Coria, J. (2012). Policy instruments for environmental and natural resource management, 2nd ed. RFF Press and Routledge, New York, NY.
  88. Sterner, T., Jeroen, C.J., Van Den Bergh, M. (1998). Frontiers of environmental and resource economics, Environmental and Resource Economics, 11(3-4), 243260. doi. https://doi.org/10.1023/A:1008236412072
  89. Strepparava, D., Nespoli, L., Kapassa, E., (...), Katelaris, L., Medici, V. 2022. Deployment and analysis of a blockchain-based local energy market. Energy Reports 8, 99-113. doi. https://doi.org/10.1016/j.egyr.2021.11.283
  90. Sulston, J. (2012). People and the Planet, The Royal Society (Britain). Retrieved from.
  91. Tavella, F., Giusi, G., Ampelli, C. (2022). Nitrogen reduction reaction to ammonia at ambient conditions: A short review analysis of the critical factors limiting electrocatalytic performance. Current Opinion in Green and Sustainable Chemistry, 35, 100604, doi. https://doi.org/10.1016/j.cogsc.2022.100604
  92. Thomson, M.C., Stanberry, L.R. (2022). Climate change and vectorborne diseases. New England Journal of Medicana, 387, 1969-1978. doi. https://doi.org/10.1056/NEJMra2200092
  93. Tollefson, J. (2020). How hot will Earth get by 2100? Nature, 580(7804), 443-445. doi. https://doi.org/10.1038/d41586-020-01125-x
  94. Tracxn, (2022). Top Thermal Energy Storage System Startups. Retrieved from
  95. Wang, L., Kolios, A., Liu, X., Venetsanos, D., Rui, C. (2022). Reliability of offshore wind turbine support structures: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 161, 112250. doi. https://doi.org/10.1016/j.rser.2022.112250

Citation

Uçkaç, Bekir Cihan, Coccia, Mario, Kargı, Bilal "Simultaneous Encouraging Effects of New Technologies for Socioeconomic and Environmental Sustainability" Bulletin Social-Economic and Humanitarian Research, Tom 19, Issue 21 P. 100 - 120. doi: 10.52270/26585561_2023_19_21_100