"Simultaneous Encouraging Effects of New Technologies for Socioeconomic and Environmental Sustainability"

Uçkaç, Bekir Cihan, Coccia, Mario, Kargı, Bilal


This research delves into the progression of technologies designed to facilitate the shift toward sustainable energy and eco-friendliness, assessing their potential influence on both ecological and economic systems. By examining data from sources like Scopus and patent records, it pinpoints promising technologies, such as offshore wind turbines, carbon capture storage, electrochemical CO2 conversion, bioconversion of CO2, sustainable ammonia production, and cellular agriculture. While certain of these technologies are already making significant progress in the market, others are still undergoing research and development. The study underscores the significance of these technologies in curbing CO2 emissions and environmental harm, providing valuable insights for policymakers and investors. It stresses the necessity for nations to transition from fossil fuel-dependent economies and instead adopt principles of a circular economy, renewable energy sources, and environmentally friendly production practices. Despite its limitations, this research illuminates essential technological avenues for sustainable development and ecological transformation.

Keywords: fossil-based energy; Environmental pollution; Environmental degradation; Sustainability science; Sustainable technologies; Environmental technologies; Green technology; Sustainable development.

Full text PDF

  1. Adam, D. (2021). How far will global population rise? Researchers cant agree. Nature, 597(7877), 462-465. doi.
  2. Adaman, F., Pat, D. (2022). Revisiting the calculation debate: A call for a multiscale approach, Rethinking Marxism, 34(2), 162-192. doi.
  3. Aidnik, M. (2022). Envisioning a utopian ecosocialism in the darkness of the Covid-19 pandemic, Capitalism Nature Socialism. 33(2), 44-59. doi.
  4. Ali A., Audi, M., Roussel, Y. (2021). Natural resources depletion, renewable energy consumption and environmental degradation: A comparative analysis of developed and developing world. International Journal of Energy Economics and Policy, 11(3), 251-260. doi.
  5. Ampelli, C. (2020). Electrode design for ammonia synthesis. Nature Catalysis, 3, 420-421. doi.
  6. Arcelor, M. (2022). Clean power steelmaking. Retrieved from.
  7. Aresta, M., Dibenedetto, A. (2020). Carbon recycling through CO2-conversion for stepping toward a cyclic-c economy. A perspective front. Energy Research. 8, 159. doi.
  8. Ayres, R.U. (1990). Technological transformations and long waves. Part II. Technologica Forecasting and Social Change. 37(2), 111-137. doi.
  9. Ayres, R.U. (1990a). Technological transformations and long waves. Part I. Technol. Forecast. Soc. Chang. 37 (1), 1-37.
  10. Ayres R.U. (1998). Towards a disequilibrium theory of endogenous economic growth. Environmental and Resource Economics, 11(3-4), 289-300. doi.
  11. Bapat, S., Koranne, V., Shakelly, N., (...), Rajurkar, K.P., Malshe, A.P. (2022). Cellular agriculture: An outlook on smart and resilient food agriculture manufacturing. Smart and Sustainable Manufacturing Systems, 6(1), 1-11. doi.
  12. Belpomme, D., Irigaray, P., Hardell, L., Clapp, R., Montagnier, L., Epstein, S., Sasco, A.J. (2007). The multitude and diversity of environmental carcinogens, Environmental Research, 105(3), 414-429. doi.
  13. Bowman, D.M. et al. (2011). The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), 2223-2236. doi.
  14. Calza, F., Parmentola, A., Tutore, I. (2020). Big data and natural environment. How does different data support different green strategies? Sustainable Futures, 2, 100029. doi.
  15. Campbell, C.J. (2002). Petroleum and people. Population and Environment, 24(2), 193-207. doi.
  16. Centobelli, P., Cerchione, R., Del Vecchio, P., Oropallo, E., Secundo, G. (2021). Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Information management, 59(7), 103508. doi.
  17. Chapman, A., Ertekin, E., Kubota, M., (...), Kirchheim, R., Sofronis, P. (2022). Achieving a carbon neutral future through advanced functional materials and technologies, Bulletin of the Chemical Society of Japan, 95(1), 73-103. doi.
  18. Chen, J., Mao, B., Wu, Y., (...), Yu, A., Peng, L. (2023). Green development strategy of offshore wind farm in China guided by life cycle assessment. Resources, Conservation and Recycling, 188, 106652. doi.
  19. Chin, A., Fu, R., Harbor, J., Taylor, M.P., Vanacker, V. (2013). Anthropocene: Human interactions with earth systems, Anthropocene, 1, 1-2. doi.
  20. Cho, R. (2022). What is decarbonization, and how do we make it happen? Columbia Climate School,
  21. Coccia, M. (2010). Public and private RD investments as complementary inputs for productivity growth. International Journal of Technology, Policy and Management, 10(1/2), 73-91. doi.
  22. Coccia, M. (2017). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis Strategic Management, 29(9), 1048-1061. doi.
  23. Coccia, M. (2018). A theory of the general causes of long waves: War, general purpose technologies, and economic change. Technological Forecasting Social Change, 128, 287-295. doi.
  24. Coccia, M. (2019). A Theory of classification and evolution of technologies within a generalized Darwinism, Technology Analysis Strategic Management, 31(5), 517-531. doi.
  25. Coccia, M. (2020). Destructive technologies for industrial and corporate change. A. Farazmand A., Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham,
  26. Coccia, M. (2021). Technological innovation. The Blackwell Encyclopedia of Sociology. Edited by George Ritzer and Chris Rojek. John Wiley Sons, Ltd.
  27. Coccia, M. (2022). Probability of discoveries between research fields to explain scientific and technological change. Technology in Society, 68, 101874. doi.
  28. Constant, K., Nourry, C., Seegmuller, T. (2014). Population growth in polluting industrialization, Resource and Energy Economics, 36(1), 229-247. doi.
  29. Crutzen, P.J., Stoermer, E.F. (2000). The anthropocene, global IGBP, Change Newsletter, 41, 17-18.
  30. CTCN, (2022). CO2 storage technologies. Retrieved from.
  31. Cui, X., Tang, C., Zhang, Q. (2018). A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions, Advanced Energy Materials. 8(22), 1800369. doi.
  32. Edeme, R.K., Nelson, C., Nkalu, J., Idenyi, C., Winnie, O.A. (2020). Infrastructural development, sustainable agricultural output and employment in ECOWAS countries, Sustainable Futures, 2, 100010. doi.
  33. Elavarasan, R.M., Pugazhendhi, R., Irfan, M., Mihet-Popa, L., Khan, I.A., Campana, P.E. (2022). State-of-the-art sustainable approaches for deeper decarbonization in Europe An endowment to climate neutral vision. Renewable and Sustainable Energy Reviews, 159, 112204. doi.
  34. Elia, A., Taylor, M., Gallachir, B., Rogan, F. (2020). Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers, Energy Policy, 147, 111912. doi.
  35. Equinor, (2022). Carbon capture, utilisation and storage (CCS). Retrieved from.
  36. Esmaeilzadeh, P. (2022). Benefits and concerns associated with blockchain-based health information exchange (HIE): a qualitative study from physicians perspectives. BMC Medical Informatics and Decision Making, 22(1), 80. doi.
  37. Foley, S.F., Gronenborn, D., Andreae, M.O., Kadereit, J.W., () Sirocko, F., Crutzen, P.J. (2013). The palaeoanthropocene The beginnings of anthropogenic environmental change, Anthropocene, 3, 83-88. doi.
  38. Fowler, D., Brimblecombe, P., Burrows, () Unsworth, M.H., Vieno M. (2020). A chronology of global air quality. Philosophical Trabsactions of the Royal Society A, 378, 20190314. doi.
  39. Gadikota, G. (2021). Carbon mineralization pathways for carbon capture, storage and utilization. Communications Chemistry, 4(1), 23-35.
  40. Ghiat I., Al-Ansari T. (2021). A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. Journal of CO2 Utilization, 45, 101432. doi.
  41. Glikson, A. (2013). Fire and human evolution: The deep-time blueprints of the Anthropocene. Anthropocene, 3, 89-92. doi.
  42. Global Change, (2022). Population growth. A project of the University of California Museum of Paleontology. Retrieved from.
  43. Gonzalo, P.A., Benmessaoud, T., Entezami, M., Garca-Mrquez, F.P. (2022). Optimal maintenance management of offshore wind turbines by minimizing the costs, Sustainable Energy Technologies and Assessments, 52, 102230. doi.
  44. Hausfather, Z., Peters, G.P. (2020). Emissions - the business as usual story is misleading. Nature, 577(7792), 618620. doi.
  45. Howson, P. (2019). Tackling climate change with blockchain. Nature Climate Change, 9, 644645. doi.
  46. Hughes, A., Park, A., Kietzmann, J., Archer-Brown, C. (2019). Beyond Bitcoin: what blockchain and distributed ledger technologies mean for firms. Business Horizpns, 62(3), 273281. doi.
  47. Iberdrola, (2022). Puertollano Green Hydrogen Plant. Retrieved from.
  48. IEA, (2022). Carbon capture, utilisation and storage. Retrieved from.
  49. IPCC, (2007), Summary for Policymakers, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, p.17.
  50. IPCC, (2013). Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  51. Javid, I., Chauhan, A., Thappa, S., Verma, S.K., Anand, Y., Sawhney, A., Tyagi, V.V., Anand, S., (2021). Futuristic decentralised clean energy networks in view of inclusive-economic growth and sustainable society. Journal of Cleaner Production, 309, 127304. doi.
  52. Kaldellis, J.K., Chrysikos, T. (2019). Wave energy exploitation in the Ionian Sea Hellenic coasts: spatial planning of potential wave power stations. International Journal of Sustainable Energy, 38(4), 312-332. doi.
  53. Kaza, S., Yao, L.C., Bhada-Tata, P., Van Woerden, F. (2018). What a Waste 2.0 : A Global Snapshot of Solid Waste Management to 2050. Urban Development;. Washington, DC: World Bank. Retrieved from.
  54. Khan, M.N., Huang, J., Shah, A., (...), Zhang, H., Nez-Delgado, A. (2022). Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar. Environmental Research, 203,111879. doi.
  55. La Scalia, G., La Fata, C.M., Certa, A., Micale, R. (2022). A multifunctional plant for a sustainable reuse of marble waste toward circular economy. Waste Management Research. 40(6), 806-813. doi.
  56. Li, M., Cao, S., Zhu, X., Xu, Y. (2022). Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities. Applied Energy, 316, 119118. doi.
  57. Linstone, H.A. (2010). Historians and complexity: trends vs. collapses? Technological Forecasting and Social Change, 77(8), 1415-1428.
  58. Lv, X.-W., Weng, C.-C., Yuan, Z.-Y. (2020). Ambient ammonia electrosynthesis: Current status, challenges, and perspectives. Chem. Sus. Chem, 13(12), 3061-3078.
  59. Magdoff, F. (2013). Global resource depletion: Is population the problem? Monthly Review, 64(8), 35-50. doi.
  60. Magdoff, F., Foster, B.J. (2011). What Every Environmentalist Needs to Know About Capitalism. Monthly Review Press: New York.
  61. Marsh, G.P. (1864). Man and Nature. Reprinted in 1965. Harvard University Press, Cambridge.
  62. Meadows, D., Meadows, D., Randers, J., Behrens III, W.W. (1972). The Limits to Growth; A Report for the Club of Romes Project on the Predicament of Mankind. New York: Universe Books.
  63. Moritz, J., Tuomisto, H.L., Ryynnen, T. (2022). The transformative innovation potential of cellular agriculture: Political and policy stakeholders perceptions of cultured meat in Germany, Journal of Rural Studies, 89, 54-65. doi.
  64. Mosleh, M., Roshani, S., Coccia, M. (2022). Scientific laws of research funding to support citations and diffusion of knowledge in life science. Scientometrics 127, 1931-1951. doi.
  65. Moss, R., Edmonds, J., Hibbard, K. et al., (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747756. doi.
  66. NASA Global Climate Change, (2022). The Effects of Climate Change. Retrieved from.
  67. National Academies of Sciences, Engineering, and Medicine, (2022). Carbon Dioxide Utilization Markets and Infrastructure: Status and Opportunities: A First Report. Washington, DC: The National Academies Press. doi.
  68. Nemet, G.F. (2006). How well does learning-by-doing explain cost reductions in a carbon-free energy technology? FEEM Working Paper, No.143.06. doi.
  69. NIST, (2022). NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 10 Retrieved from.
  70. Nti, K.E., Cobbina, S.J., Attafuah, E.E., Opoku, E., Gyan, M.A. (2022). Environmental sustainability technologies in biodiversity, energy, transportation and water management using artificial intelligence: A systematic review. Sustainable Futures, 4, 100068. doi.
  71. Oh, H.S. (2020). Unit commitment considering the impact of deep cycling, Sustainable Futures, 2, 100031. doi.
  72. Peplow, M. (2022). The race to upcycle CO2 into fuels, concrete and more. Nature, 603, 780-783. doi.
  73. Prez, C.J., Ponce, C.J. (2015). Disruption costs, learning by doing, and technology adoption, International Journal of Industrial Organization, 41, 64-75. doi.
  74. Pronti, A., Coccia, M. (2020). Multicriteria analysis of the sustainability performance between agroecological and conventional coffee farms in the East Region of Minas Gerais (Brazil). Renewable Agriculture and Food Systems, 36(3), 299-306. doi.
  75. Pronti, A., Coccia, M. (2021). Agroecological and conventional agricultural systems: comparative analysis of coffee farms in Brazil for sustainable development, International Journal Sustainable Development, 23(3/4), 223-248. doi.
  76. Resources Magazine, (2022). Carbon Capture and Storage, 101. Retrieved from.
  77. Roger, M., Brown, F., Gabrielli, W., et al. (2018). Efficient hydrogendependent carbon dioxide reduction by Escherichia coli. Current Biology, 28(1), 140-145. doi.
  78. Roshani, S., Bagheri, R., Mosleh, M., Coccia, M. (2021). What is the relationship between research funding and citation-based performance? A comparative analysis between critical disciplines. Scientometrics, 126, 7859-7874. doi.
  79. Ruddiman, W.F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climate Change, 61, 261-293. doi.
  80. Saeli, M.I.N., Capela, M., Campisi, T., Seabra, M.P., Tobaldi, D.M., La Fata, C.M. (2022). Architectural technologies for life environment: Spent coffee ground reuse in lime-based mortars. A preliminary assessment for innovative green thermo-plasters, Construction and Building Materials, 319, 126079. doi.
  81. Sahal, D. (1981). Patterns of Technological Innovation, Addison-Wesley Publishing Company, Inc.: Reading, MA, USA.
  82. Sanni, M., Verdolini, E. (2022). Eco-innovation and openness: Mapping the growth trajectories and the knowledge structure of open eco-innovation. Sustainable Futures, 4, 100067. doi.
  83. Scopus, (2022). Start exploring, search documents. Retrieved from.
  84. Soloveichik, G. (2019). Electrochemical synthesis of ammonia as a potential alternative to the HaberBosch process. Nature Catalysis, 2, 377-380. doi.
  85. Steffen, W., Crutzen, P.J., McNeill J.R. (2007). The Anthropocene: are humans now overwhelming the great forces of nature? AMBIO, 36, 614-621. doi.;2
  86. Steingraber, S. (1997). Industrial pollution, pesticides, and cancer. Living Downstream. An Ecologist Looks at Cancer and the Environment. Reading, Addison-Wesley, Massachusetts,
  87. Sterner, T., Coria, J. (2012). Policy instruments for environmental and natural resource management, 2nd ed. RFF Press and Routledge, New York, NY.
  88. Sterner, T., Jeroen, C.J., Van Den Bergh, M. (1998). Frontiers of environmental and resource economics, Environmental and Resource Economics, 11(3-4), 243260. doi.
  89. Strepparava, D., Nespoli, L., Kapassa, E., (...), Katelaris, L., Medici, V. 2022. Deployment and analysis of a blockchain-based local energy market. Energy Reports 8, 99-113. doi.
  90. Sulston, J. (2012). People and the Planet, The Royal Society (Britain). Retrieved from.
  91. Tavella, F., Giusi, G., Ampelli, C. (2022). Nitrogen reduction reaction to ammonia at ambient conditions: A short review analysis of the critical factors limiting electrocatalytic performance. Current Opinion in Green and Sustainable Chemistry, 35, 100604, doi.
  92. Thomson, M.C., Stanberry, L.R. (2022). Climate change and vectorborne diseases. New England Journal of Medicana, 387, 1969-1978. doi.
  93. Tollefson, J. (2020). How hot will Earth get by 2100? Nature, 580(7804), 443-445. doi.
  94. Tracxn, (2022). Top Thermal Energy Storage System Startups. Retrieved from
  95. Wang, L., Kolios, A., Liu, X., Venetsanos, D., Rui, C. (2022). Reliability of offshore wind turbine support structures: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 161, 112250. doi.


Uçkaç, Bekir Cihan, Coccia, Mario, Kargı, Bilal "Simultaneous Encouraging Effects of New Technologies for Socioeconomic and Environmental Sustainability" Bulletin Social-Economic and Humanitarian Research, Tom 19, Issue 21 P. 100 - 120. doi: 10.52270/26585561_2023_19_21_100